
Web to Mesh Connectivity Page 1 of 60
C-DEngine [October 10, 2019]

C-DEngine™ Concepts

Web-to-Mesh Connectivity

Last Revision: September 19, 2019

Web to Mesh Connectivity Page 2 of 60
C-DEngine [October 10, 2019]

Chapter 1 C-DEngine Distributed Web Services .. 4

1.1 Overview .. 4

1.2 Setup and Configuration ... 4

1.3 Hosting a Static HTML Page .. 4

1.4 Add an Image ... 5

1.5 Distributed Web Browsing... 5

1.6 Distributed Cloud Web Browsing ... 6

1.7 Advanced Topic: Caching .. 7

1.8 Advanced Topic: Synchronous vs Asynchronous content .. 7

1.9 Advanced Topic: Redundant content ... 8

1.10 Web Content Authoring .. 8

Chapter 2 Creating HTTP Interceptors in a C-DEngine Plugin .. 10

2.1 Overview .. 10

2.2 The C-DEngine Communication Core ... 10

2.3 Extending the C-DEngine with Plugins ... 10

2.4 Inbound HTTP Traffic .. 10

2.5 Static HTML Pages .. 11

2.6 Dynamic HTML Pages ... 11

2.7 Network Request and Response in TheRequestData .. 13

2.8 Unregistering an HTTP Interceptor .. 15

2.9 Detecting Conflicts between Interceptors .. 16

2.10 Interceptor Helper Function .. 16

2.11 Providing REST-Style Data ... 17

2.12 Other IHttpInterceptor Functions .. 18

2.13 Authenticating REST Users .. 19

Chapter 3 Accessing Mesh Resources ... 24

3.1 Overview .. 24

3.2 The C-DEngine Mesh ... 24

3.3 Messages ... 24

3.4 A REST Server and REST Client ... 25

3.5 Simplest REST Client to REST Server Operation... 26

3.6 REST Server with C-DEngine Node Messages ... 28

3.7 Message Requests and Responses ... 30

Web to Mesh Connectivity Page 3 of 60
C-DEngine [October 10, 2019]

Chapter 4 Compare and Contrast C-DEngine and REST API ... 34

4.1 Overview .. 34

4.2 Feature Checklist Comparison ... 34

4.3 Similarities .. 35
4.3.1 HTTP Protocol... 35
4.3.2 JavaScript Friendly .. 35
4.3.3 Data Compression .. 35
4.3.4 Use of SSL / TLS for Security .. 36

4.4 Differences between C-DEngine and REST.. 36
4.4.1 Synchronous vs. Asynchronous ... 36
4.4.2 HTTP vs. Web Sockets ... 37
4.4.3 HTTP Dependencies .. 39
4.4.4 Location of Command and Parameters ... 41
4.4.5 Support for Queues .. 42
4.4.6 Batching in Message Delivery.. 42
4.4.7 Message Priorities Fine-Tune Message Delivery .. 43

4.5 Conclusion .. 44

Chapter 5 Shared Web Worker in C-DEngine JavaScript/TypeScript (cdeWorker.js) 45

5.1 Installing C-DEngine Web Worker Support ... 45

5.2 A small Sample explained .. 45
The sample shows: .. 45

5.3 Supported Web Browsers .. 45

5.4 Unsupported Web Browsers .. 46

5.5 Debugging .. 46

5.6 Required Classes ... 51

5.7 Important Notes ... 55

5.8 Future enhancements ... 56

5.9 Dependencies ... 56

Appendix A: The Fire Gate Plugin .. 58

A.1 About the Fire Gate Plugin ... 58

A.2. Configuring Fire Gate Plugin ... 58

Web to Mesh Connectivity Page 4 of 60
C-DEngine [October 10, 2019]

Chapter 1 C-DEngine Distributed Web Services

1.1 Overview
This document describes the usage of the Distributed Web Service (DWS) of the C-DEngine. It is

meant for Web Designers, Web Developers and IT personal in charge of setting up distributed IoT

Web Scenarios in Industrial Environments.

1.2 Setup and Configuration
DWS is part of the C-DEngine but in order for the DWS to be active, the C-DEngine must be hosted in

a “relay”. An example for this Relay is the “Factory-Relay” or similar product. With the C-DEngine

SDK, developers build custom relays and configure distributed web service environments.

There is no special installation necessary to activate the DWS functionality of a relay. Please follow

the instructions to install your Factory-Relay or go through the “Getting Started” guide that

accompanies the C-DEngine SDK.

A C-DEngine mesh is created when two or more C-DEngine nodes are connected together and share

a common Scope ID. Connections between nodes are established by defining the ServiceRoute

value of each node to reference the URL of one or more C-DEngine nodes. In order for each part of

the DWS to work together, all participating C-DEngine nodes must use the same Scope ID value.

For security reasons, the DWS is meant for static pages only. It is provided to help distribute

reference material (such as manuals, help text, device information) to all of the nodes in a mesh.

When dealing with dynamic content, you must provide a plugin that has been created with an HTTP

Interceptor (see Chapter 2).

1.3 Hosting a Static HTML Page
When a relay starts for the first time, it will have a ClientBin folder in the same folder as the relay's

executable file. This folder is the location where shareable content should be placed. The easiest

way to understand how this works is to try it out yourself.

1. Put the following lines of HTML in a file and name the file relay.html:

<html>

 <body>

 <h1>This is My Relay Server</h1>

 </body>

</html>

2. Copy the file relay.html to the ClientBin folder of one of your C-DEngine relay nodes.

3. Type the following URL into a browser address bar: http://localhost:8706/relay.html. You

may need to modify this address for your relay's actual port number.

http://localhost:8706/relay.html

Web to Mesh Connectivity Page 5 of 60
C-DEngine [October 10, 2019]

4. You now see the HTML file appear in your browser.

1.4 Add an Image
The HTML support provided by the DWS provides all the basic features that you expect to find in a

web server. You can, for example, use HTML anchor ("<a>") tags to navigate between pages. You

can organize your HTML files into folders. And you can image ("") tags within your HTML to

improve the visual appeal of your web pages.

Since the DWS is a "Distributed Web Service," you can create links to content on any relay in the

mesh (remember: all nodes must have the same Scope ID) as if all the content is located on a single

server. Here is something to try, so you can see that images are supported in DWS:

1. Within the ClientBin folder on any node in the mesh, create a folder and name it Images.

2. Find a nice royalty-free and license-free JPEG image on the web. Copy the file into the

ClientBin/Images folder.

3. Rename the image file to myimg.jpg.

4. Modify the HTML file you created earlier

<html>

 <body>

 <h1>This is My Relay Server</h1>

 </body>

</html>

You can now load the relay.html file in your browser to see that the page and the embedded

image appear as you expect them to. These

Figure 1.1. Distributed web services (DWS) enables seamless access to mesh-wide content.

1.5 Distributed Web Browsing

Web to Mesh Connectivity Page 6 of 60
C-DEngine [October 10, 2019]

You can distribute the HTML files, images, scripts, and other web page resources between all of the

relays in your C-DEngine mesh. You only need to maintain the same folder structure from your

original node. When you open a browser and type in the URL for the web page, you will see the

page along with any embedded images.

From time to time, when loading an HTML page into a browser, you may see a message that says:

Waiting for page…

The DWS shows this message to alert the user that it is searching for a page in the mesh. This may

take a few seconds, depending on the number of nodes in the mesh, the speed of the connections

between nodes, and how the node-to-node communication is configured (for example, whether

nodes are communicating using the http protocol, or whether nodes are communicating using the

newer and faster Web Sockets protocol).

Note: Node-to-node communication requires authentication. Web browsers are

authenticated with a user-id and password. But sometimes you wish to allow

unauthenticated browsers access to content, to display a help file, for example.

Enable unauthenticated browsers to access distributed web browsing resources, by

setting the AllowDistributedResourceFetch flag to true.

1.6 Distributed Cloud Web Browsing
If your mesh includes a cloud node relay, you can connect to the cloud node from anywhere on the

internet and use this connection to view content from anywhere in the mesh. To prevent

unauthorized access to your mesh, the connection is possible only after you have established a

secure connection to your mesh. In addition to the security considerations, there is a practical one

as well: when you connect through a cloud relay node, the cloud cannot know where to find the

nodes in your mesh until you authenticate the connection.

Make sure your Factory-Relay node is connected to the cloud.

1. Go to the Factory-Relay plug-in screen and click on the “Cloud Setup” button. If it shows

“Public Cloud” you are connected to the Factory-Relay cloud.

2. Open a browser and point at www.Factory-Relay.com/NMI

3. Enter your email and password for your Factory-Relay.

4. Once you see the main portal of the Factory-Relay go to another tab in the same browser.

Note: Make sure to use the same browser and not open a new browser as the

cookie of the C-DEngine is only shared between tabs of the same instance of a

browser. As soon as you close the browser or use another one, the session is no

longer valid, and cookies are automatically deleted.

5. Now enter www.factory-relay.com/relay.html in the URL of the new tab

After a short wait you will see the page with the “This is My Relay Server” and the image on it.

http://www.factory-relay.com/NMI
http://www.factory-relay.com/relay.html

Web to Mesh Connectivity Page 7 of 60
C-DEngine [October 10, 2019]

1.7 Advanced Topic: Caching
Caching plays a very important role in improving a user experience of web site. Caching helps

improve web browser performance and minimize the load on a network. Web servers and web

browsers have a very complicated relationship when it comes to caching. A web server can offer a

cache period, and a web browser might choose to accept that cache period or might ignore it and

handle the caching itself. Web page developers place hints within HTTP headers as well as in HTML

pages to influence caching behavior.

While user experience is, of course, an important concern, the C-DEngine was designed with a very

high priority placed on security considerations. For that reason, the C-DEngine uses a caching policy

that is certainly more stringent than that used by web browsers. Here are some of the elements of

the C-DEngine caching policy:

• HTML Pages are cached for 30 seconds in the “first node”. (The first node is the node the

browser is connected to).

• PDFs, Icons, Fonts, ZIP Files, JavaScript Files, Style Sheets (CSS) and Images are cached on a

node until that node restarts.

• There is no caching for XML and JSON files. Instead, these are requested from mesh nodes

every time there is a request for a file of this type.

Caching can be changed with two settings in the App.Config:

• DisableCache=true (turns off all caching)

• CacheMaxAge =xx (sets the time in second for the cache (default is 30)

All caching that is performed by the C-DEngine is done so in a way that is compatible with the safe

and secure operation of the C-DEngine's multi-tenant support. Among other things, this means that

the C-DEngine cache is aware of the important role that scope IDs use in enabling connections

between nodes. All of this means that the C-DEngine enforces the rule that each customer can only

see their own resources and not the resources of any other customer.

1.8 Advanced Topic: Synchronous vs Asynchronous content
The HTTP protocol was invented in the 1970s and has evolved very little. It is still inherently a

synchronous protocol, meaning that it operates like someone with a checklist that must finish one

task before starting any other task. For example, if a browser requests a HTML page, it sends a

request to the web server and blocks the request thread until a page is returned. The server must

return the page in the response to the incoming request.

In an asynchronous environment, a browser could request a page and then go work on other things

instead of waiting for the request to be filled. Once a web server has gathered all the information

needed for a page, it returns that information to the browser. This might be very fast (less than a

second) or it might be very slow (many minutes).

To optimize network throughput and improve the user experience, an implementation of the

C-DEngine is available in JavaScript (the cdeNMI.js JavaScript-Engine) that works asynchronously.

The JavaScript C-DEngine sends pages and content asynchronously between the DWS and the web

Web to Mesh Connectivity Page 8 of 60
C-DEngine [October 10, 2019]

browser. Unfortunately, this works only for data and dynamic updating content – not for static

content such as image resources and html pages.

Sometimes, the DWS must gather synchronous content from multiple nodes before it can send

content back to the browser. In such cases, the C-DEngine DWS must wait for all content to be

delivered from other nodes before it can send a response to a web browser. Only after all required

content for a request has been assembled can the DWS transmit the results to the web browser.

Although the DWS is a distributed system, that does not mean that the DWS does any caching of

HTML Pages (or other content) in the web server node. If required content is not present on the

C-DEngine node closes to the web browser (also known as the "first node"), the DWS hold the

request until the resource has been gathered across the mesh. The DWS holds the request for a

maximum of 50 seconds and if the resource could not be found by then, returns a StatusCode=404

(Page Not Found). As of now, there is no configuration setting to change the wait time, however,

this might be added in the future.

Although the C-DEngine has been optimized for asynchronous operation, the limits in the operation

of HTTP and HTML means that most HTML content is provided synchronously. There are some

important exceptions worth noting, including zip files, XAP (Silverlight Content) and Fonts. Some

browsers do automatically retry these resources if they get a request timeout (HTTP status code

408) from a web server.

1.9 Advanced Topic: Redundant content
A C-DEngine mesh could have two nodes or it could have twenty. The benefit of having multiple

nodes is that there is redundancy in case a node goes down or is unavailable for some reason. One

disadvantage of having many nodes is that it can take time to copy content from one node to

another, especially when the data requester and the data provider have many nodes between them.

We mentioned earlier that the DWS does not cache content between multiple nodes. If relay.html

is served up from one node, that node is asked to provide that content. In other words, there is no

automatic redundancy of content.

However, there is no reason why you cannot copy content between nodes to allow for the benefits

of redundancy. We already mentioned how content availability is improved with redundancy. It is

also likely that overall system performance and throughput is improved by redundancy. Certainly, if

each node in a mesh has a copy of all of the content in that mesh, then there won't be any delays

from waiting for content to be served up by another node in a mesh.

Note: Care must be taken to avoid file name conflicts. Consider two different

versions of a file named starfish.jpg. If all images were in the ClientBin\Images

folder on each node, but one version was on some nodes and another version was

on other nodes. There would be no way to predict which version would appear a

request was received that included that file name.

1.10 Web Content Authoring

Web to Mesh Connectivity Page 9 of 60
C-DEngine [October 10, 2019]

C-Labs has implemented its own website using the Distributed Web Services support provided by

the C-DEngine. We know that it works because we rely on it to provide content to customers and

prospective customers who point their browsers at http://www.c-labs.com.

Our website is an example of a distributed web solution. Some of the resources on www.c-labs.com

are provided from different nodes in the www.c-labs.com mesh. For example, the main static pages

are on the www.c-labs.com cloud webserver while documents, whitepapers and other resources are

stored on a different node in our secure network at C-Labs headquarters in Bellevue, Washington,

USA. Developers can use the C-DEngine platform to build their own distributed web solutions as

well.

The NMI of the C-DEngine (for example the “Factory-Relay Portal”) is an example of distributed

content viewing and a central part of the Factory-Relay. It is important to understand that there is a

big difference between traditional web-sites with static and dynamic content and the C-DEngine

NMI (Natural Machine Interface).

A traditional web site receives a request for a web page, assembles the page on the server, and then

injects dynamic content into the page. Once a page has been assembled, it is sent to the web

browser for display to a user. This type of web page content is static. Updating the page requires a

refresh on the entire page.

By contrast, a C-DEngine NMI page is highly dynamic in the browser. Content is constantly being

updated on-the-fly without a user having to manually refresh a page. In fact, when a user manually

refreshes a page by clicking a browser's refresh button, we consider this an event with possibly

security implications. To maintain the integrity of your data, the NMI responds by dropping a session

and requiring users to logs in again.

Note: this is true as of Version 4.206 of the C-DEngine. In a later version, we want to

resume a session after F5 is pressed.

http://www.c-labs.com/
http://www.c-labs.com/
http://www.c-labs.com/
http://www.c-labs.com/

Web to Mesh Connectivity Page 10 of 60
C-DEngine [October 10, 2019]

Chapter 2 Creating HTTP Interceptors in a C-DEngine Plugin

2.1 Overview
This article describes how HTTP Interceptors enable C-DEngine plugins to customize the actions of
the C-DEngine's web server based on the value of the URL of the incoming resource request. An
important aspect of this web server support is that it is limited to the specific C-DEngine nodes that
are directly accessible to the web clients. In other words, other nodes in the mesh are not visible to
the web client. This is illustrated in Figure 2.1.

Figure 2.1. An HTTP Interceptor handles incoming web requests for a single C-DEngine node.

2.2 The C-DEngine Communication Core
The C-Labs C-DEngine supports a rich set of network communication features. It can run as a stand-

alone web server, and can alternatively run within the Microsoft web server, Internet Information

Service (IIS). In addition to the HTTP protocol, enhanced performance is available through support of

web sockets. The primary implementation of C-DEngine is a .NET-based C# library, and a Javascript

version enables operation from within all popular web browsers. A rich message passing mechanism

enables node-to-node communication for nodes on a common mesh. In addition, secure

communication is supported over the public internet by means of cloud nodes.

2.3 Extending the C-DEngine with Plugins
Plugins provide the primary means to extend the core features of C-DEngine. A Plugin is a .NET-
compatible DLL created using the C-DEngine SDK. A C-DEngine plugin can register "interceptor"
callback functions to listen for and respond to inbound HTTP traffic. In this way, a plugin can use the
network to send or receive any data that fall within the support that the HTTP protocol provides.

2.4 Inbound HTTP Traffic
Among the standard set of HTTP methods, the C-DEngine itself makes use of these two: GET and
POST. The GET method asks that a resource (such as a file) be retrieved and provided to the caller.
The POST method moves data in the opposite direction, so that a caller can send a resource to a
C-DEngine plugin. (The maximum size for an incoming resource size is 25 MB.)

Web to Mesh Connectivity Page 11 of 60
C-DEngine [October 10, 2019]

When integrating an HTTP interceptor into a C-DEngine plugin, care should be taken to avoid
conflicts with resource names that the C-DEngine reserves for its own uses. Table 2.1 shows a list of
reserved resource names.

/

/BROWSERCONFIG.XML

/CDE

/CDECLEAN.ASPX

/CDEUSERSTATUS

/CSS

/DEVICE.XML

/DEVICEREG.JSON

/EVTLOG.RSS

/IMAGES

/IPXIBOOT.PXI

/JS

/NONE

/NMIEXT

/SITEMAP.XML

/SYSLOG.RSS

Table 2.1. Reserved C-DEngine URLs.

2.5 Static HTML Pages
The C-DEngine supports the ability to serve up static web pages from the C-DEngine's data folder,

ClientBin. Any user, including anonymous users, can access these pages. If a file named

relay.html was placed into the ClientBin folder with contents like the following:

<html>

 <body>

 <h1>This is My Relay Server</h1>

 </body>

</html>

That file would be available using a URL like this: http://localhost:8700/relay.html. The value for the

port (8700) is defined in the startup configuration of the application that hosts the C-DEngine.

2.6 Dynamic HTML Pages
The C-DEngine also supports dynamically created HTML pages. The same relay.html page can be

dynamically created using an HTTP Interceptor. An HTTP interceptor is a function that gets called

when a specified path is received by the C-DEngine's http handler. To start an interceptor, a plugin

connects a URL and a specified callback function by calling the RegisterHttpInterceptorB4

function. Here is an example of an interceptor being registered from within the standard plugin

initialization function, Init():

public bool Init()

{

 if (!mIsInitStarted)

 {

http://localhost:8700/relay.html

Web to Mesh Connectivity Page 12 of 60
C-DEngine [October 10, 2019]

 mIsInitStarted = true;

 TheCommCore.MyHttpService.RegisterHttpInterceptorB4(

 "/relay.html", sinkRelay);

 mIsInitCompleted = true;

 MyBaseEngine.ProcessInitialized();

 }

 return true;

}

The function RegisterHttpIntercetorB4 is defined in the C-DEngine SDK as follows:

void RegisterHttpInterceptorB4(

 string pUrl, // Target Url

 Action<TheRequestData> sink) // Intercept function

In the code sample, the first parameter, pUrl, is "/relay.html". When a URL is requested that

starts with this target URL, the following function is called to fulfill the resource request:

private void sinkRelay(TheRequestData pRequest)

{

 pRequest.ResponseMimeType = "text/html";

 pRequest.ResponseBufferStr =

 "<html>"

 + " <body>"

 + " <h1>This is My *Dynamic* Relay Server</h1>"

 + " </body>"

 + "</html>";

 pRequest.ResponseBuffer =

 TheCommonUtils.CUTF8String2Array(

 pRequest.ResponseBufferStr);

 pRequest.StatusCode = (int)eHttpStatusCode.OK;

 pRequest.DontCompress = true;

 pRequest.AllowStatePush = false;

}

Although this example uses the same target file name as the previous example, note that we've

changed the text slightly to make sure that we are, in fact, calling the dynamic html page instead of

the static one. Figure 2.2 shows the resulting page in a web browser.

Figure 2.2. A dynamic HTML page as it appears in a browser window.

This example of a dynamic HTML page targets a single file name. While this certainly works, a more

common case would be to serve up multiple pages for a given interceptor. To accomplish that, we

could change the target URL to a folder name like "/dynamic" and use that value as the pUrl

Web to Mesh Connectivity Page 13 of 60
C-DEngine [October 10, 2019]

parameter that we pass to RegisterHttpInterceptorB4. We might then access "relay.html" with

a URL like this: http://localhost:8700/dynamic/relay.html.

2.7 Network Request and Response in TheRequestData
A key part of creating an HTTP interceptor involves understanding the incoming request and

formulating an appropriate response. In other settings, these tasks are accomplished by reading a

request from an incoming object and putting the return values in a response object. In a C-DEngine

http interceptor, both incoming request fields and outgoing response data are packaged with one

structure: TheRequestData. Details about the most important TheRequestData property fields are

provided in Table 2.2.

Property Description
cdeRealPage

A subset of the URL that identifies the requested page and local
path, without a server name or any properties. For example, this
URL http://localhost:10/my/page?num=12, generates a value for
cdeRealPage of "/my/page".

ClientCert An object with certificate information. The specific format is

dependent on the type of web server. For example, in Asp.Net
the certificate objects are of type
System.Web.HttpClientCertificate. In an HttpListener type
web server, the certificates are of type
System.Security.Cryptography.

X509Certificates.X509Certificate2.

Header A dictionary field initialized to hold the headers of the incoming
request.

HttpMethod A string with the name of the HTTP request method. For example,
GET, POST, OPTION or DELETE.

HttpVersion Provides the HTTP version from an incoming request, formatted
as a double value. For example, 1.0 or 1.1.

HttpVersionString Provides the HTTP version from an incoming request, formatted
as a string. For example, "1.0" or "1.1".

PostData A byte array holding data sent with an incoming post request.

PostDataLength An integer value indicating the length of the data in the PostData
array.

RequestUri A Uri type field containing the URL of the incoming request.
For example, all of the details in a URL like this

http://localhost:8700/dynamic/relay.html
http://localhost:10/my/page?num=12

Web to Mesh Connectivity Page 14 of 60
C-DEngine [October 10, 2019]

Property Description

http://localhost:10/my/page?num=12 are available within
various members of RequestUri.

ResponseBuffer A byte array property for response being returned to the sender.
When an interceptor sends return data to the client, this field
holds the data to be returned.

ResponseBufferStr The response being sent to the client by an http interceptor,
formatted as a string.

ResponseEncoding A string value used to populate the "Content-Encoding" field in
the header of the response.
Examples include "gzip", "compress", "deflate", "identity", and
"br".

ResponseMimeType A string indicating the format, or "media type", of the returned
data. This is initially set to the value in the ContentType field

of the incoming request.
Examples include "text/html", "text/xml", "text/json",
"image/png", "application/javascript", and "application/json".

There is a helper function to provide a mime type based on a file's
extension. That function is
TheCommonUtils.GetMimeTypeFromExtension.

StatusCode

An integer for the HTTP Status Code. Initially set to zero, an
interceptor function must set this value to indicate that a request
has been handled. Possible values include:

• Not Handled (0)

• OK (200)

• NotFound (404)

• NotAcceptable (406)

• ServerError (500)

• RequestTimeout (408)

These values are defined in the eHttpStatusCode enum.

UserAgent String value holding the UserAgent field of an incoming http
request. For example:
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0)
Gecko/20100101 Firefox/69.0"

SessionState A TheSessionState object that enables the tracking of individual
users when the users make multiple calls to an interceptor. The
member properties of SessionState are provided in Table 2.3.

http://localhost:10/my/page?num=12

Web to Mesh Connectivity Page 15 of 60
C-DEngine [October 10, 2019]

Table 2.2. Important property values in TheRequestData.

An http interceptor uses the following fields to determine what the incoming request is:
◼ RequestUri – provides the URL used to create the request, including the full path and all

parameters.

And then an http interceptor fills in the following fields as part of the response:

◼ ResponseBuffer – the data being returned.
◼ ResponseMimeType – the type of data being returned in ResponseBuffer.
◼ StatusCode – set to 200 (OK) to indicate the request has been handled.

Property Description
CID A Guid value with the current user id, which can be validated

using various user manager functions to check user permissions.

cdeMID A Guid value that can be used to store a unique identifier for a
session. This is similar to the cdeMID field used by the C-DEngine
as a unique ID for things. An http interceptor can use this field for
a similar purpose, to help persist data between calls from a client.

CustomData A string value for non-standard storage of persistent session
state information in an exchange between clients and servers. For
example, an access token or API key.

CustomDataLong A long value for non-standard storage of persistent session state
information in exchanges between clients and servers. For
example, a counter value.

EntryTime Time stamp indicating when the session was created.

LastAccess Time stamp indicating when session state was last accessed.

UserAgent A string with the User Agent of the initial request. This should
have the same value as the UserAgent property in
TheRequestData.

WebPlatform A string indicating the platform from which the request was sent.
Valid values include "Mobile", "Desktop", "XBox", "IoT",
"HoloLens".

Table 2.3. Important property values in TheSessionState.

2.8 Unregistering an HTTP Interceptor
There might be the need to remove an HTTP Interceptor for one reason or another. The function
that you call to do this is UnregisterHttpInterceptorB4. Here is an example of that function being
called to uninstall the interceptor created earlier in this paper:

Web to Mesh Connectivity Page 16 of 60
C-DEngine [October 10, 2019]

TheCommCore.MyHttpService.UnregisterHttpInterceptorB4("/relay.html");

2.9 Detecting Conflicts between Interceptors
There are a few types of conflicts to watch for when creating interceptors. The first thing to know is

that interceptors are stored in a dictionary container, and that the URL is the dictionary keys. This

means that there cannot be two URLs that are exactly the same. But it is possible to have URLs that

are similar.

Consider the problem if there are two plugins that each register an http interceptor for the URL

"/dynamic". This is possible, and when it happens the last one to register the URL will win. In other

words, the callback for the plugin that registered the interceptor last will be called when the target

URL is contained in an incoming http request. The callback for the first plugin to register is not

called. If you suspect this is happening, you can look for the following message in the C-DEngine

system log:

TXT: Warning: Replaced existing http intercept before.

PLS: URL passed into call to register interceptor.

Engine Name: HttpService

Debug Level: eDEBUG_LEVELS.VERBOSE (2)

In addition, it is possible to have two interceptors with similar URLs. Consider, for example, these

two URLs: /dynamic and /dynamic/relay.html. If two different plugins registered interceptors

using these two URLs, it is possible that there would be a conflict if both plugins were looking for a

request for the resource named /dynamic/relay.html. To help identify when this situation occurs,

there is a system log message generated when a URL is registered that has an overlap with an

existing interceptor. Here are the details of that system log message:

TXT: Warning: Possible conflict in URLs pass to http intercept before.

PLS: InputUrl:{pUrl} ExistingUrl:{strKey}

Engine Name: HttpService

Debug Level: eDEBUG_LEVELS.ESSENTIALS (1)

2.10 Interceptor Helper Function
To help in the development, debugging, and unit testing of http interceptor functions, there is a
helper function that calls into the http call stack at the exact place where interceptor functions are
called. The name of the function is TheCommonUtils.GetAnyFile. GetAnyFile tries to load the
requested resource first from Disk under /ClientBin then tries to load the file from the Plugins
Internal Embedded Resources (any file marked as “EmbeddedResource” in Visual Studio).

Here is an example of the function being called to access a file identified by the URL
"/dynamic/relay.html".

Web to Mesh Connectivity Page 17 of 60
C-DEngine [October 10, 2019]

// using nsCDEngine.ViewModels;

TheRequestData p = new TheRequestData();

p.cdeRealPage = "/dynamic/relay.html";

TheCommonUtils.GetAnyFile(p);

If (p.StatusCode > 0) {. . .}

2.11 Providing REST-Style Data
An http interceptor can provide REST (Representational State Transfer) support as well. For a simple

example, we have a database of record holders in track and field for the distance of one mile. To

keep things extremely simple, we limit the size of our database and define the class

TheRecordHolder has having the following fields:

 public class TheRecordHolder

 {

 public int id;

 public string strTime;

 public string strName;

 public string strNationality;

 public string strDate;

 }

We create an http interceptor that is triggered when the URL starts with /api/MileRecordHolder

as follows:

TheCommCore.MyHttpService.RegisterHttpInterceptorB4("/api/MileRecordHol

der",

sinkMileApiInterceptor);

Our interceptor function is set up to handle requests like the following:

 localhost:8700/api/MileRecordHolder?id=6

That is, the interceptor handles requests where the record id is provided. The interceptor,

sinkMileApiInterceptor, is as follows:

/// <summary>

/// sinkThingApiInterceptor – Interceptor Function

/// </summary>

/// <param name="pRequest"></param>

public void sinkMileApiInterceptor(TheRequestData pRequest)

{

 string strQuery = pRequest.RequestUri.Query;

 if (strQuery.StartsWith("?"))

 strQuery = strQuery.Substring(1);

 if (!strQuery.StartsWith("id"))

 return;

 int iValue = strQuery.IndexOf("=");

Web to Mesh Connectivity Page 18 of 60
C-DEngine [October 10, 2019]

 if (iValue > -1 && iValue+1 < strQuery.Length)

 {

 int id = -1;

 if (int.TryParse(strQuery.Substring(iValue+1), out id))

 {

 if (id > 0 && id <= TheRecordHolder.aData.Length)

 {

 ProvideResponseData(pRequest, id);

 }

 }

 }

}

If the client's request can get met, the ProvideResponseData function is called. This function fills in

the required values in TheRequestData object so that the data can be provided to the client:

public void ProvideResponseData(TheRequestData p, int id)

{

 p.ResponseMimeType = "application/json";

 TheRecordHolder trh = TheRecordHolder.aData[id - 1]

 string strJ =

TheCommonUtils.SerializeObjectToJSONString<TheRecordHolder>(trh);

 p.ResponseBuffer = TheCommonUtils.CUTF8String2Array(strJ);

 p.StatusCode = (int)eHttpStatusCode.OK;

 p.DontCompress = true;

 p.AllowStatePush = false;

}

2.12 Other IHttpInterceptor Functions
Table 2.4 summarizes other functions in the IHttpInterceptor interface that may also be of

interest. You might notice that there are a few other types of interceptors. In addition to the
"before" interceptor that we discussed earlier, there is also an "after" interceptor. The "B4" in the
function we introduced earlier means "before" because RegisterHttpInterceptorB4 is

called relatively early in the page rendering process. By contrast,
RegisterHttpInterceptorAfter, is called quite late in the page rendering process, when a

request that matches the URL pattern has not been processed by any other handler.

Function Description
RegisterHttpInterceptorB4

This function registers an interceptor
callback function, and a target URL path, to
be called BEFORE the C-DEngine processes
the request further. If this function is called
from inside an isolated plugin, the request is
forwarded to the master node.

UnregisterHttpInterceptorB4

Removes a registered interceptor function
from the list of before interceptors.

RegisterHttpInterceptorAfter This function registers an interceptor
callback function, and an associated target

Web to Mesh Connectivity Page 19 of 60
C-DEngine [October 10, 2019]

Function Description

URL, to be called for unhandled http
processing requests. An unhandled request
is one where the returned status code is
either zero (unhandled) or 408 (request
timeout).

UnregisterHttpInterceptorAfter

Removes a registered interceptor function
from the list of after interceptors.

RegisterGlobalScriptInterceptor This function registers a callback function to
provide one or more global Javascript file. If
this function is called from inside an
isolated plugin, the request is forwarded to
the master node.

RegisterStatusRequest This function allows a plugin to register a
callback function that adds HTML to the
web page that is displayed when the user
summons the cdeStatus.aspx status

page with either ALL or DIAG specified as a
parameter.

CreateHttpHeader A helper function to create a header from
the provided TheRequestData.

cdeProcessPost This is the main http processing function of
the C-DEngine. You can call this function to
inject an HTTP request into the C-DEngine.
Among other uses, it could be used for unit-
testing of an http interceptor.

GetGlobalScripts Returns a list of all globally registered
Javascript scripts.

Table 2.4. Summary of available functions in the IHttpInterface.

2.13 Authenticating REST Users
By default, incoming requests to an HTTP Interceptor are not authenticated. The C-DEngine NMI
component supports user accounts and passwords in a manner that addresses the inherently
insecure nature of a web browser. That component is not accessible to a plugin running in an
application host, which by its very nature is quite a bit more secure than that of a browser.

Adding user authentication support to a REST server is as straightforward as defining the structure
of the income URL and the names of the required fields. Here are the key portions of an
implementation that C-Labs is happy to share as a working sample. Here is the HTTP Interceptor
function that is the doorway to the REST server support:

/// <summary>

/// sinkThingApiInterceptor - Called when our URL is referenced.

/// </summary>

/// <param name="pRequest">HTTP request and response fields.</param>

public void sinkThingApiInterceptor(TheRequestData pRequest)

{

Web to Mesh Connectivity Page 20 of 60
C-DEngine [October 10, 2019]

 string strLocalPathLower = pRequest.RequestUri.LocalPath.ToLower();

 string strQuery = pRequest.RequestUri.Query;

 Dictionary<string, string> aParameters =

utils.ParseQueryParameters(strQuery);

 if (strLocalPathLower == "/api/milerecordholder/logon")

 {

 utils.ValidateUserCredentials(pRequest, aParameters);

 }

 else if (strLocalPathLower == "/api/milerecordholder/query")

 {

 if (utils.IsTokenValid(aParameters))

 {

 if (aParameters.ContainsKey("id"))

 {

 string strValue = aParameters["id"];

 int id;

 if (int.TryParse(strValue, out id))

 {

 if (id > 0 && id <= TheRecordHolder.aData.Length)

 {

 ProvideResponseData(pRequest, id);

 }

 }

 }

 }

 }

}

To parsing parameters from the incoming URL, there is the ParseQueryParameters() function:

public static Dictionary<string, string> ParseQueryParameters(string

pQuery)

{

 Dictionary<string, string> pOut = new Dictionary<string, string>();

 string[] astrParameters = pQuery.Split(new char[2] { '?', '&' },

 StringSplitOptions.RemoveEmptyEntries);

 foreach (string str in astrParameters)

 {

 string[] astrResult = str.Split(new char[1] { '=' },

 StringSplitOptions.RemoveEmptyEntries);

 if (astrResult.Length == 2)

 {

 string key = astrResult[0].ToLower();

 string value = astrResult[0].ToLower();

 pOut[key] = value;

 }

 }

 return pOut;

}

We check whether the user and password value are valid in the ValidateUserCredentials()
function:

Web to Mesh Connectivity Page 21 of 60
C-DEngine [October 10, 2019]

/// <summary>

/// Called using a URL like this: /xxxx/xxxxx/Logon?user=xxxx&pwd=yyyyy

/// </summary>

/// <param name="pRequest">TheRequestData receive in http

interceptor.</param>

/// <param name="aParameters">Parameter values parsed into a

dictionary.</param>

///

public static bool

ValidateUserCredentials(TheRequestData pRequest,

 Dictionary<string, string> aParameters)

{

 bool bSuccess = false;

 if (aParameters != null & aParameters.Count > 1)

 {

 string strUser = aParameters["user"].ToString();

 string strPwd = aParameters["pwd"].ToString();

 if (strUser != null && strPwd != null)

 {

 if (strUser == "myuser" && strPwd == "asterisks")

 {

 Guid pToken = CreateToken(pRequest);

 SaveToValidTokenTable(pToken);

 // Return access token to caller.

 SetResponseValue(pRequest, pToken);

 bSuccess = true;

 }

 }

 }

 if (bSuccess == false)

 {

 SetEmptyResponse(pRequest);

 }

 return bSuccess;

}

We return a Guid as access token if the user has entered valid credentials.

public static void SetResponseValue(TheRequestData pRequest, Guid

guidValue)

{

 pRequest.ResponseMimeType = "application/json";

 string strJson =

TheCommonUtils.SerializeObjectToJSONString<Guid>(guidValue);

 pRequest.ResponseBuffer =

TheCommonUtils.CUTF8String2Array(strJson);

 pRequest.StatusCode = (int)eHttpStatusCode.OK;

 pRequest.DontCompress = true;

Web to Mesh Connectivity Page 22 of 60
C-DEngine [October 10, 2019]

 pRequest.AllowStatePush = false;

}

We return an empty response for invalid credentials.

public static void SetEmptyResponse(TheRequestData pRequest)

{

 pRequest.ResponseMimeType = "text/html";

 pRequest.ResponseBuffer = new byte[1];

 pRequest.ResponseBuffer[0] = 0;

 pRequest.StatusCode = (int)eHttpStatusCode.OK;

 pRequest.DontCompress = true;

 pRequest.AllowStatePush = false;

}

The various aspects of creating, storing, and validating access tokens is provided in this set of
functions. In this implementation, tokens have a limited life span. A user must authenticate again
once an access token has expired.

private static Dictionary<Guid, DateTime> dictValidAccessTokens = null;

private static void InitAccessTokenTable()

{

 dictValidAccessTokens = new Dictionary<Guid, DateTime>();

}

private static Guid CreateToken(TheRequestData pRequest)

{

 Guid pNewToken = Guid.NewGuid();

 return pNewToken;

}

private static bool SaveToValidTokenTable(Guid pToken)

{

 bool bSuccess = false;

 try

 {

 if (dictValidAccessTokens == null)

 InitAccessTokenTable();

 DateTime pNow = DateTime.Now;

 dictValidAccessTokens[pToken] = pNow;

 bSuccess = true;

 }

 catch { }

 return bSuccess;

}

public static bool IsTokenValid(Dictionary<string, string> aParameters)

{

 bool bSuccess = false;

Web to Mesh Connectivity Page 23 of 60
C-DEngine [October 10, 2019]

 CleanupOldTokens();

 if (aParameters.TryGetValue("key", out string strToken))

 {

 if (!String.IsNullOrEmpty(strToken))

 {

 Guid guidToken = TheCommonUtils.CGuid(strToken);

 DateTime dt;

 if (dictValidAccessTokens != null)

 {

 if (dictValidAccessTokens.TryGetValue(guidToken, out

dt))

 bSuccess = true;

 }

 }

 }

 return bSuccess;

}

private static void CleanupOldTokens()

{

 if (dictValidAccessTokens != null)

 {

 List<Guid> keysToRemove = new List<Guid>();

 foreach (KeyValuePair<Guid, DateTime> kvp in

dictValidAccessTokens)

 {

 DateTime dt = DateTime.Now;

 TimeSpan ts = (dt - kvp.Value);

 if (ts.TotalHours > 4)

 keysToRemove.Add(kvp.Key);

 }

 foreach (Guid g in keysToRemove)

 {

 dictValidAccessTokens.Remove(g);

 }

 }

}

A later version of the C-DEngine may offer this a token-based authentication feature as part of the
core APIs.

Web to Mesh Connectivity Page 24 of 60
C-DEngine [October 10, 2019]

Chapter 3 Accessing Mesh Resources
3.1 Overview
This chapter builds on the material of earlier chapters. In Chapter 1, we introduced Distributed Web

Services (DWS) as a feature that allows static content in one mesh node to be shared with other

mesh nodes. In Chapter 2, we covered the creation of HTTP Interceptors, which allow incoming web

requests to serve up dynamic content: for example, an html page or REST API.

In this chapter, we bring together the handling of incoming web requests with the ability to access

any resource from anywhere in the mesh. This ability already exists for standard static browser

content such as html pages or graphic images. In this chapter, we extend the reach of incoming web

requests to enable access to any type of dynamic content. In particular, we show how one node can

receive an incoming REST API request and use other mesh node to assist in fulfilling those requests

(see Figure 3.1).

Figure 3.1. Messages (TSM = "The System Message") enable communication between C-DEngine

nodes within the same mesh.

3.2 The C-DEngine Mesh
A C-DEngine mesh consists of two or more connected C-DEngine nodes. As has been mentioned

earlier, the ServiceRoute setting allows one C-DEngine node to "point-to" one (or more) other

C-DEngine node(s).1 A C-DEngine mesh consists of the collection of all C-DEngine nodes that (a)

share a common Scope ID and (b) are "pointed to" by other C-DEngine nodes, and (c) for which

every node is reachable by at least one route. Note that a route may involve traversing one or more

intermediate nodes.

3.3 Messages

1 To be able to access the http service from the Windows 10 desktop, run the application host as an
administrator.

Web to Mesh Connectivity Page 25 of 60
C-DEngine [October 10, 2019]

Nodes communicate with each other by means of messages. To send a message, the TSM data

structure is populated and transmitted by one of these C-DEngine API calls:

◼ TheCommCore.PublishCentral – transmit a message to every node in a mesh. This is

somewhat expensive, especially when a mesh is very large. It provides a means to advertise

a service to all mesh nodes.

◼ TheCommCore.PublishToNode – transmit a message to a specific node. This requires the

sender to know the node ID for the target node (of type Guid).

◼ TheCommCore.PublishToOriginator – transmit a message to a specific node to provide a

response to a previously received message.

 Messages provide the primary means for communicating between nodes. The most important TSM

fields are summarized in Table 3.1.

Field Description
ENG A string field for the engine (plugin service class) that owns the message.
TXT

A string field for the message command. Examples include
CDE_INITIALIZED, CDE_PING. One or more strings can be added as
parameters. By convention, a colon (":") is used to separate a command
from parameters. For example: "REPLY_NODEID:039BEECB-0130-4EA3-
BBAA-1A3CBF4C8B27.

PLB (Payload binary) A byte array for binary parameters.

PLS (Payload string) A string field for longer parameters. When PLB is empty,
the PLS can be compressed and placed into the PLB to reduce the
network overhead for the message.

Table 3.1. Summary of important fields in a TSM object.

In the context of using messages to transmit REST requests, one approach would involve copying the

request from the incoming URL and including that string in the TXT field of a message. A reply

message could similarly use the TXT field to hold whatever reply is being provided. Alternatively,

when longer replies are expected then the PLS field could be used to hold the details of the reply.

3.4 A REST Server and REST Client
The best way to see how this can operate is to look at a sample implementation. Figure 3.2 shows a

sample host application that is set up to configure several REST servers. There are configuration

settings that enable the nodes to connect with one another, and also settings to enable different

parts of the REST server operation.

Web to Mesh Connectivity Page 26 of 60
C-DEngine [October 10, 2019]

Figure 3.2. The configuration settings for a sample REST Server.

Figure 3.3 shows a sample REST Client that is set up to call into the REST Server. The REST Client is a

Windows Forms application without any support from the C-DEngine API.

Figure 3.3. A sample REST Client for calling into our REST Server.

3.5 Simplest REST Client to REST Server Operation
You can start the two sample programs in any order that you'd like. It doesn't make a difference

because neither one performs any automatic network actions. As you may expect, the REST server

Web to Mesh Connectivity Page 27 of 60
C-DEngine [October 10, 2019]

needs to be operational before we expect to get any reasonable results from it. The default

configuration is set up to be operational without requiring any changes.

To start the REST server, click the "Init Base App" button. You see a message that says "Success

initializing Base App." Next, click the button labeled "Start Base App." You see a message that says,

"Success starting Base App. Click URL to launch browser." The REST server is now operational.

In the REST Client, click the button labeled "Log On". This sends a request to the REST server for

authentication and, if that is successful, an access token is returned. Figure 3.4 shows the REST client

immediately after successful authentication. Notice that the field labeled "Access Token" has been

populated with a Guid value that gets included in the URL to prove that we have the right to use the

available services.

Figure 3.4. The REST client after successful log on authentication.

You may also note that the box labeled "Request URL" shows the complete URL that was sent to the

REST server. You can copy this to the address line of a browser to experiment with the REST server

directly. Notice also that the complete response stream is shown in the "Response Stream" field,

including the header information. You need to scroll down to find the body of the response.

This REST server provides the same information as the sample REST server in the earlier chapter,

namely information about people who have held the record for running a mile in the fastest time.

The "Input Parameters" field is set up to request the record with an id value of 2. You can modify

this field (the sample only has 5 records) then click the "GET" button.

The results of our query appear in two places: (1) At the end of the response stream, and (2) at the

end of the transaction log. Figure 3.5 and 3.6 show the results from each of these two locations.

Web to Mesh Connectivity Page 28 of 60
C-DEngine [October 10, 2019]

Figure 3.5. Results of the query from the response stream.

Figure 3.6. Results of the query in the transaction log.

3.6 REST Server with C-DEngine Node Messages
To configure the REST server for demonstrating node-to-node message sending, start two more

copies of the REST server sample. In one of them, set the port value to "8730". And in the second

one, set the port value to "8740". The sample has been set up so that when these port values are

selected, the other configuration settings are automatically configured to demonstrate the node-to-

node support for the REST server. Figures 3.7 and 3.8 shows two copies of the REST server set up for

this demonstration.

Figure 3.7. The REST server set up to receive REST requests and forward them to another node for

handling.

Web to Mesh Connectivity Page 29 of 60
C-DEngine [October 10, 2019]

Figure 3.8. The REST server set up to receive mesh requests for data from another node.

Notice that the REST server that is using port 8730 has a cloud service route configured for

http://localhost:8740. That is the key piece of information that is needed to tie the two nodes

together. Notice also that the other REST server is set up to use port 8740.

Initialize and start each of the REST servers by clicking the "Init Base App" and "Start Base App"

buttons. Make sure you see the "Success starting" message for each of them.

In the REST client, set the port to "8730" by clicking the appropriate radio button. Although we

received an access token when we access the REST server at port 8720, that access token is not

recognized by the two new REST servers. After setting the port, click the "Log On" button to receive

an access token. Then click the "GET" button to retrieve the data from the REST server. To the REST

client, there is nothing to indicate that the data came from anywhere other than the REST server

that was referenced in the base URL.

Figure 3.9 and 3.10 show the C-DEngine Event Viewer application, with details on messages that

were received by each of the nodes. Figure 3.9 shows the messages sent to the node with port 8730,

which is the node that was the REST server.

Figure 3.9. Event Viewer output showing a message sent to the port 8740 node.

http://localhost:8740/

Web to Mesh Connectivity Page 30 of 60
C-DEngine [October 10, 2019]

Figure 3.10. Event Viewer output showing messages sent to the port 8730 node.

Notice the value in the TXT fields for the various messages. The MsgMileRecordHolder message is a

request to provide the data. There is also a set of messages that have the same name with the value

"_REPONSE" at the end.

3.7 Message Requests and Responses
There is a very common design pattern within C-DEngine plugins. That pattern involves sending a

message to another node, and then waiting for the other node to reply. To support this design

pattern, the C-DEngine provides a support class named TheCommRequestResponse. This class was

used in the REST server sample. Here are the elements which are part of this sample:

1) A message request class (MsgMileRecordHolder).

2) A message response class (MsgMileRecordHolderResponse).

3) A case statement in the HandleMessage() function for receiving the request.

4) A call to one of the support functions within TheCommRequestReponse. In the sample, the

function called is PublishRequestJSonAsync.

Each of these elements appears below:

The request data structure, MsgMileRecordHolder, appears here:

public class MsgMileRecordHolder

{

 public int id;

}

The response data structure, MsgMileRecordHolderResponse, is shown here:

public class MsgMileRecordHolderResponse

{

 public int id;

 public TheRecordHolder data;

}

The HandleMessage function is shown here:

public void HandleMessage(ICDEThing sender, object pIncoming)

{

 TheProcessMessage pMsg = pIncoming as TheProcessMessage;

 if (pMsg == null) return;

 string[] cmd = pMsg.Message.TXT.Split(':');

Web to Mesh Connectivity Page 31 of 60
C-DEngine [October 10, 2019]

 switch (cmd[0])

 {

 case "CDE_INITIALIZED":

 MyBaseEngine.SetInitialized(pMsg.Message);

 break;

 case nameof(MsgMileRecordHolder):

 if (g_EnableMeshDataResponse)

 {

 // Request from another node for mile record holder

information.

 var request =

TheCommRequestResponse.ParseRequestMessageJSON<MsgMileRecordHolder>(pMs

g.Message);

 var MsgResponse = new MsgMileRecordHolderResponse();

 if (request != null)

 {

 MsgResponse.data =

TheRecordHolder.QueryRecordHolder(request.id);

 }

TheCommRequestResponse.PublishResponseMessageJson(pMsg.Message,

MsgResponse);

 MsgResponse = null; // Prevent legacy response

handler.

 }

 break;

 default:

 break;

 }

}

The function from the REST server sample that brings all of this together is named

MeshQueryRecordHolder. Here is the complete function:

public static TheRecordHolder MeshQueryRecordHolder(int idRecord, Guid

node, string strEngineName, Guid cdeMIdThing)

{

 TheRecordHolder trh = null;

 // Package up request info.

 MsgMileRecordHolder msgRequest = new MsgMileRecordHolder()

 {

 id = idRecord

 };

 // Start asynchronous task to send a message and wait for a reply.

 // Sends a message named nameof(MsgMileRecordHolder)

 // Receives a reply named nameof(MsgMileRecordHolderResponse)

 // See function "HandleMessage" for actual handling.

 Task<MsgMileRecordHolderResponse> t = null;

 try

 {

 TheMessageAddress tma = new TheMessageAddress()

Web to Mesh Connectivity Page 32 of 60
C-DEngine [October 10, 2019]

 {

 Node = Guid.Empty,

 EngineName = strEngineName,

 ThingMID = cdeMIdThing,

 SendToProvisioningService = false,

 };

 t = TheCommRequestResponse.PublishRequestJSonAsync<

 MsgMileRecordHolder, MsgMileRecordHolderResponse>

 (tma, msgRequest);

 }

 catch (Exception ex)

 {

 string strMessage = ex.Message;

 }

 // Wait for a bit

 t.Wait(20000);

 bool bTaskCompleted = t.IsCompleted;

 // Check for success.

 if (bTaskCompleted)

 {

 MsgMileRecordHolderResponse msgResponse = t.Result;

 trh = msgResponse.data;

 }

 return trh;

}

Here is the definition for the class TheRecordHolder, which is the central data providing class in this

example and in another example from an earlier chapter.

public class TheRecordHolder

{

 public int id;

 public string strTime;

 public string strName;

 public string strNationality;

 public string strDate;

 public TheRecordHolder(int i, string t, string name, string nat,

string d)

 {

 id = i;

 strTime = t;

 strName = name;

 strNationality = nat;

 strDate = d;

 }

 public static TheRecordHolder[] aData = new TheRecordHolder[]

 {

 new TheRecordHolder(1, "03:43.1", "Hicham El Guerrouj",

"Morocco", "7 July 1999"),

Web to Mesh Connectivity Page 33 of 60
C-DEngine [October 10, 2019]

 new TheRecordHolder(2, "03:44.4", "Noureddine Morceli",

"Algeria", "5 September 1993"),

 new TheRecordHolder(3, "03:46.3", "Steve Cram", "United

Kingdom", "27 July 1985"),

 new TheRecordHolder(4, "03:47.3", "Sebastian Coe", "United

Kingdom", "28 August 1981"),

 new TheRecordHolder(5, "03:48.4", "Steve Ovett", "United

Kingdom", "26 August 1981"),

 };

 public static TheRecordHolder QueryRecordHolder(int id)

 {

 if (id > 0 && id <= TheRecordHolder.aData.Length)

 return TheRecordHolder.aData[id - 1];

 else

 return null;

 }

}

Web to Mesh Connectivity Page 34 of 60
C-DEngine [October 10, 2019]

Chapter 4 Compare and Contrast C-DEngine and REST API
This chapter compares C-DEngine to REST. It provides a close look at the two, with details on

specific similarities and specific differences between the C-Labs C-DEngine and a typical REST server.

4.1 Overview
The C-DEngine enables asynchronous communication, while REST APIs are built on the assumption

of synchronous communication. Both C-DEngine and REST support the HTTP protocol, while only

C-DEngine supports the more efficient web sockets. In addition to its support for asynchronous

message delivery, C-DEngine also supports the batching of multiple messages for great network

throughput than a comparable set of REST calls.

There can be a great deal of variation between how various REST servers are implemented, and

various REST servers use the HTTP protocol and URL in a wide range of styles. With C-Engine, by

contrast, data is sent and delivered in JSON format. The C-DEngine uses the message body for API

commands and parameters, which allows C-DEngine messages to be routable. By contrast, REST

APIs require commands and parameters on the URL which prevents REST requests from being

routed.

4.2 Feature Checklist Comparison
Table 4.1 provides a feature-by-feature comparison of key features of both C-DEngine and the REST

API.

 C-DEngine REST API
Network Transports

TCP / IP supported? Yes

Yes

HTTP / HTTPS supported? Yes

Yes

Web Sockets supported? Yes

No

Synchronous / Asynchronous Models

Supports synchronous transactions? Yes Yes

Supports asynchronous transactions? Yes No

Persistent Connections
(w/ HTTP 1.1 or web sockets)

Yes Yes
(No web socket

support)

Network Topologies

Star?

Yes Yes

Mesh? Ring?

Yes No

Web to Mesh Connectivity Page 35 of 60
C-DEngine [October 10, 2019]

 C-DEngine REST API
Tree? Bus?

Yes No

Network Models

Client / Server Yes Yes

Peer to Peer Yes No

Data Request Models

Request / Response Yes
(asynchronous

queued content)

Yes
(synchronous)

Publish / Subscribe Yes No

Broadcast Yes No

Data Security

White List Trusted Nodes Yes No

Automatic Retry on Delivery Failure No No

Multi-Tenant Support Available Yes Yes

Table 4.1 Feature by feature comparison of C-DEngine to REST

4.3 Similarities
This section covers some of the similarities between the C-DEngine and REST. FOr example, both the

C-DEngine and REST can be used to send a request / response interaction over a network between

two entities. The two entities might be two processes running on a single computer, or two

processes running on two different computers. What are other ways in which the two are similar?

4.3.1 HTTP Protocol
Both C-DEngine and REST both support the HTTP protocol, a foundation of the world-wide web.

And, in fact, C-DEngine itself uses the REST protocol in some limited circumstances. The C-DEngine

has a wide range of additional communication features not possible with REST, which will be the

focus of the next section in this chapter.

4.3.2 JavaScript Friendly
Both C-DEngine and REST operate in a JavaScript-friendly manner. By this, we mean that C-DEngine

and REST can be access from JavaScript code. Both C-DEngine and REST support the use of JSON

(JavaScript Object Notation) formatted data objects.

4.3.3 Data Compression
Both C-DEngine and REST enable data compression to save network bandwidth when large blocks of

data need to be moved. One potential sticking point involves choice of compression algorithm.

When both client and server support a common algorithm, then that algorithm can be used to gain

the various benefits of compression. But when a given client and a given server cannot find a

common compression algorithm supported by both, then compression cannot be used. This can

become an issue because the developer of a REST server is likely to be different from the developer

of REST clients that use that server. This is less likely to be a problem with C-DEngine compression,

Web to Mesh Connectivity Page 36 of 60
C-DEngine [October 10, 2019]

since the C-DEngine is likely to be both supplier and consumer of compressed data as it is moved

from one node to another.

4.3.4 Use of SSL / TLS for Security
Connections made by HTTP and Web Sockets will have their data security encrypted when SSL / TLS

transport encryption is enabled.

4.4 Differences between C-DEngine and REST
This section covers differences between C-DEngine and REST.

4.4.1 Synchronous vs. Asynchronous
One important difference between the C-DEngine and REST is that C-DEngine is asynchronous while

REST is synchronous. Here are some examples to clarify what this means.

When a REST client makes a request of a REST server, the REST client must wait for the REST server

to provide a response. To recover from situations when a REST server never responds, there is a

timeout value (typically around 60 seconds) after which the REST client receives an error rather than

a valid response. This synchronous behavior is one factor that keeps the REST interaction simple.

There is no need to remember earlier transactions, nor any need to check back for forgotten

requests. That simplicity comes at a cost, however, and that cost is paid in terms of delays in a REST

server that cause delays in REST clients.

The C-DEngine, on the other hand, is inherently an asynchronous platform. When a request is made,

in the form of a message being sent, the sender does not have to wait for the recipient to respond

to the request. Instead, the sender can work on other things. There are, of course, situations in

which a message sender does not wish to do anything but to wait for the response. There is a

commonly required design pattern to send a message and wait for a reply, and there are several

support classes within C-DEngine that make it very easy to do this. The overall benefit of the

asynchronous nature of C-DEngine is that less time is spent waiting and more actual work gets done.

Web to Mesh Connectivity Page 37 of 60
C-DEngine [October 10, 2019]

Figure 4.1. Details of HTTP Connect / Request / Close Model

4.4.2 HTTP vs. Web Sockets
In the section on similarities, it was mentioned that both C-DEngine and REST support the HTTP

protocol. While on the subject of communication protocols, it's worth pointing out an important

difference between C-DEngine support and REST support: the C-DEngine supports the Web Sockets

protocol while REST does not. The differences between HTTP and Web Sockets are enough to be

worth exploring in more detail.

◼ Opening and Closing of TCP Connections – An HTTP connection involves opening a

connection, sending a request, receiving a response, then closing the connection. This is

illustrated in Figure 4.1, where the request “Add 1 to 1” causes the server to generate the

response of “2”. In this figure, each arrow represents a transmission of some data either

from the client to the server, or from the server to the client (dotted lines). There is a total

of seven arrow, with four from the client and three from the server.

The actual “work” of this REST-like interaction is handled by two of these arrows: the “GET”

from the client and the “Your answer” from the server. The other five represent overhead.

There are ways to keep a connection open, and in fact the HTTP 1.1 protocol has this “keep

alive” feature enabled by default. Nonetheless, there is no escaping the fact that using just

the HTTP protocol requires many more open and close operations than use of the web

sockets protocol.

To be fair, a web socket connection starts out as an HTTP connection which is then

upgraded to a web socket connection. This means that the startup and shutdown costs of

Web to Mesh Connectivity Page 38 of 60
C-DEngine [October 10, 2019]

both types of connections are the same. But a web socket connection is typically kept open

for as long as the client and the server need to communicate with each other, which might

be minutes, hours or days. And while an HTTP connection can be kept alive for a few

minutes, the inevitable timeout (usually within a matter of minutes) means that additional

HTTP requests require the overhead of establishing a new connection. For this reason, the

overhead of starting and stopping a web socket connection can be amortized over many

dozen (or even many thousands) of requests and responses. By contrast, the overhead of

opening and closing an HTTP connection can only be amortized over a few (less than ten)

requests.

This item alone suggests that the REST protocol can be recommended when just a few

requests are required. With few requests from a given source, the overhead of each

protocol is about the same. But an increase in the number of requests starts to tilt the

balance in favor of web socket as more efficient in terms of network resources.

◼ Overhead of Headers – The HTTP protocol requires a header for requests and responses.

Here is an example of such a header:

GET / HTTP/1.1

Host: jsonplaceholder.typicode.com

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90

Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: __cfduid=dd64f69aef736b2129e50f7fcc1379d291569875784;

_ga=GA1.2.218285718.1569875784

If-Modified-Since: Mon, 05 Aug 2019 03:07:14 GMT

This header, which is 547 bytes long, was generated by the Chrome browser. (The header

shows that the request was sent to this URL: http://jsonplaceholder.typicode.com.)

The request, of course, is only half the story. Or, in the context of our earlier example, the

GET /math/add/1/1 portion of the connection). There is still the response to consider,

which has a header like the following:

HTTP/1.1 304 Not Modified

Date: Fri, 04 Oct 2019 18:45:21 GMT

Connection: keep-alive

X-Powered-By: Express

Vary: Origin, Accept-Encoding

Access-Control-Allow-Credentials: true

Cache-Control: public, max-age=14400

Last-Modified: Mon, 05 Aug 2019 03:07:14 GMT

Etag: W/"278a-16c5fbec6d0"

http://jsonplaceholder.typicode.com/

Web to Mesh Connectivity Page 39 of 60
C-DEngine [October 10, 2019]

Via: 1.1 vegur

CF-Cache-Status: HIT

Age: 2490

Expires: Fri, 04 Oct 2019 22:45:21 GMT

Server: cloudflare

CF-RAY: 52094ff84874967e-SJC

Taken together, the overhead of this HTTP request/response pair is 982 bytes (547 bytes +

435 bytes). This (approximately) 1,000-byte overhead is incurred per actual HTTP request

and response. In the case of the 1+1 request and response of "2", the 1,000-byte cost is the

total header cost, since the HTTP-defined headers are only sent with the request and the

response transmissions. The opening and closing transmissions have no such header

associated with them.

In the context of completed REST calls, the overhead of 1,000-bytes per HTTP request/

response applies. For example, the total overhead for the following 3 REST calls is about

3,000 bytes:

• http://jsonplaceholder.typicode.com/users?id=1

• http://jsonplaceholder.typicode.com/users?id=3

• http://jsonplaceholder.typicode.com/users?id=10

The overhead scales linearly as more REST calls are made, so that 100 REST calls incur an

overhead of 100,000 bytes of network traffic.

The overhead for web socket calls, by contrast, is much lower. While REST calls incur a

1000-byte overhead per call / response pair, web sockets incur only a four bytes overhead

per comparable request / response. In per-transaction overhead, web sockets are 99.6%

more efficient than REST transactions.

4.4.3 HTTP Dependencies
Both C-DEngine and REST support HTTP, as was mentioned in an earlier section. The way each uses

HTTP is quite different. The C-DEngine use of HTTP is minimal, to allow C-DEngine to run on other

protocols.

REST, on the other hand, is extensively interwoven with HTTP2. We say “can be” here because it is

possible to create REST servers with a minimal reliance on HTTP. While there are some REST servers

that will exhibit some (or all) of the dependencies mentioned here, there are likely other REST

servers that have few of the dependencies mentioned here. These variations exist because there are

no REST standards that dictate the details of how a server must operate in order to be called a REST

server.

2 This should, perhaps, be expected since Roy Fielding, who is credited with developing the REST architectural
style, had participated extensively in the HTTP/1.1 standardization process.

http://jsonplaceholder.typicode.com/users?id=1
http://jsonplaceholder.typicode.com/users?id=3
http://jsonplaceholder.typicode.com/users?id=10

Web to Mesh Connectivity Page 40 of 60
C-DEngine [October 10, 2019]

◼ HTTP Methods – HTTP/1.1 defines seven HTTP methods: OPTIONS, GET, HEAD, POST, PUT,

DELETE, and TRACE3. Of these methods, the C-DEngine uses just one: POST.

By contrast, REST server developers may use up to four different HTTP methods. The

familiar “CRUD” model from SQL programming can be mapped to these methods as

follows4:

SQL “CRUD” HTTP Method

Create POST

Read GET

Update PUT

Delete DELETE

◼ Mime Types – It’s important to get the data you requested. It’s also important to get the

data in the format that is most useful to you. The Accept tag of an HTTP request header

allows a client to let a server know what data formats would be acceptable. For example,

here is the Accept tag from the HTTP request header example shown earlier in this chapter:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,

image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3

On the response end of things, an HTTP response header can use the Content-Type tag to

notify the client about the data format.

To keep things simple, the C-DEngine uses application/json as its standard data format.

There are numerous helper functions within C-DEngine to simplify the process of converting

between .NET types (which C# prefers) to JSON (which JavaScript prefers).

There are no official standards for REST servers, and so developers of REST clients need to

pay attention to the types of data returned by their favorite REST servers and adapt

accordingly.

About Variations among REST Servers

The observation that "…developers of REST clients need to adapt to differences

between REST servers…" is an important one. The variations between different

REST servers causes trouble for developers.

The best that can be hoped for is to have a solid set of examples for a given REST

server to figure out what works and what does not work. All REST servers use the

command line for command input. But how that is done varies from one REST server

3 See IETF RFC 2068: https://tools.ietf.org/html/rfc2068.
4 Adapted from https://www.restapitutorial.com/lessons/httpmethods.html.

https://tools.ietf.org/html/rfc2068
https://www.restapitutorial.com/lessons/httpmethods.html

Web to Mesh Connectivity Page 41 of 60
C-DEngine [October 10, 2019]

to another. In the JSON Placeholder test server, the following two URLs produce

identical results:

-- http://jsonplaceholder.typicode.com/users/5

-- http://jsonplaceholder.typicode.com/users?id=5

The theme of "variations are everywhere" applies to almost everything related to

REST, including how the URL is structured for REST access, how (and whether) URL

parameters are used, which HTTP methods (POST / GET / PUT / PATCH) are

supported as well as which HTTP status codes are supported and which mime types

are supported.

These variations are sometimes mentioned as a security benefit, with logic that

suggests that a confusing API is safer (more secure) because it is more inaccessible

to those who wish to misuse and exploit a server. That logic is flawed, since it is just

another way of saying that " security by obscurity works." No professional computer

security expert would ever suggest such a thing.

An obscure REST API confuses developers. A confused developer is a less productive

developer.

Figure 4.2 The supported HTTP methods and some of the URLs available for one REST server.

4.4.4 Location of Command and Parameters
Another important difference between REST transaction and C-DEngine transactions has to do with

the location of commands and parameters. Although there is a lot of variation between different

REST servers, in general there are two places that command information can be found:

◼ In the body of the URL itself.

◼ In the HTTP method.

http://jsonplaceholder.typicode.com/users/5
http://jsonplaceholder.typicode.com/users?id=5

Web to Mesh Connectivity Page 42 of 60
C-DEngine [October 10, 2019]

The REST test site JSON Placeholder illustrates this nicely. Figure 4.2 shows the supported pairings of

HTTP methods (GET, POST, etc.) with supported URLs5.

All C-DEngine commands and parameters are located in the body of a message. Within the TSM data

structure, the TXT field holds the command and parameters. When longer parameter data is passed

with a message, there is a PLS field for strings and PLB for binary data.

4.4.5 Support for Queues
It was mentioned earlier in this chapter that an important difference between C-DEngine and REST is

that C-DEngine is inherently asynchronous. Expanding on that theme, C-DEngine supports a feature

that is not supported in REST: message queues. Figure 4.3 illustrates how each C-DEngine node as a

queue, known as the "sender queue", of messages being sent out.

The sender queue is created and managed by the C-DEngine, with no intervention required by

application developers or plugin developers. There are some configuration settings for modifying

how the sender queue operates, but otherwise application and plugin developers do not need to

know anything more than that this support exists.

Figure 4.3. Asynchronous Operation is Enabled through smart message queues.

4.4.6 Batching in Message Delivery
In terms of comparing C-DEngine to REST, it's worth mentioning that C-DEngine batches messages.

While each REST call delivers one and only one API requests, a single C-DEngine network

transmission might deliver ten or twenty (or more!) messages.

This means that even when the C-DEngine must use the HTTP protocol to communicate between

nodes, it does so in a manner that is more efficient than the approach taken by REST. It was

mentioned earlier in this chapter that each HTTP request / response pair incurs an overhead of

about 1,000 bytes. When ten REST calls are made, there is an inescapable overhead of 10,000 bytes

just for the text headers alone. By comparison, when ten C-DEngine messages are sent over HTTP,

5 From http://jsonplaceholder.typicode.com/.

http://jsonplaceholder.typicode.com/

Web to Mesh Connectivity Page 43 of 60
C-DEngine [October 10, 2019]

the ability to batch messages means that the overhead of transmitting these messages might only

incur 1,000 bytes for the request, and perhaps another 1,000 bytes to deliver responses. (Web

sockets improve upon this story even more, with just 4 bytes to deliver a batched set of requests

and perhaps another 4 bytes to deliver a batched set of responses.)

Figure 4.4. Batching of Message Delivery helps optimize overall mesh throughput.

4.4.7 Message Priorities Fine-Tune Message Delivery
Among the many ways that message delivery can be fine-tuned, perhaps the most important

involves the ability to set priorities for different types of C-DEngine messages. Figure 4.5 illustrates

how the ability to set message priorities enable control over how messages are delivered. Each

message has a priority value that varies from 255 (the lowest priority) to 0 (the highest priority).

When a message is created, as an instance of a TSM, the default priority that is set is 5.

It's worth mentioning that messages with a priority of 0 (zero) are never sent to the cloud, but

rather are only delivered locally. Application developers can use the range from 1 – 4 to define

various levels of "high priority" message traffic. Messages with a priority from 6 to 255 are less

urgent and are handled as such. To prevent complete starvation of lower priority messages, the

C-DEngine has a priority-inversion feature that helps ensure that at least a few lower priority

messages get delivered even during a storm of higher priority messages. (A configuration switch

allows an application developer to disable priority inversion.)

Figure 4.5. Message priorities allows applications to fine-tune message delivery.

Web to Mesh Connectivity Page 44 of 60
C-DEngine [October 10, 2019]

4.5 Conclusion
There is no question that there is a lot of momentum behind REST in the industry today. Where,

then, does it make sense to use REST versus other solutions? A benefit of REST that is often

mentioned is the "loose coupling" between client and server. As described in this chapter, it does

that at the cost of a higher overhead and less flexibility in terms of request routing. These factors

suggest that REST does best when occasional requests are required. In such cases, the overhead of

those few calls are unlikely to overwhelm network resources.

Where solutions like the C-Labs C-DEngine thrive, on the other hand, are those that combine one or

more of the following factors:

◼ Tight coupling between nodes.

◼ The need for peer-to-peer interactions. In other words, where there is the need for any

node to initiate requests.

◼ Medium to high number of transactions between nodes.

◼ Medium to high data volume to move between nodes.

◼ Where efficient usage of scarce (or expensive) network resources is required.

Web to Mesh Connectivity Page 45 of 60
C-DEngine [October 10, 2019]

Chapter 5 Shared Web Worker in C-DEngine JavaScript/TypeScript

(cdeWorker.js)
Starting with version 4.209.1, the C-DEngine supports the HTML5 Web Worker as part of the

browser-based NMI. This feature is available to JavaScript and TypeScript developer, enabling a

background thread on browsers that support this feature. As of September 2019, approximately

36% of web browsers (worldwide) have Web Worker support (see usage data, below).

5.1 Installing C-DEngine Web Worker Support
1. Copy the file workertest.html into the ClientBin folder of the C-DEngine application host.

Note that the ClientBin folder is the root folder for C-DEngine web pages.

2. Copy the file cdeWorker.js to the ClientBin/CDE folder of the C-DEngine application host.

3. To access C-DEngine (NMI) features, copy the file cde.js to the ClientBin/CDE folder.

4. Start the C-DEngine application host.

5. Load the page workertest.html into the browser, using an http URL.

Note: File access (file://) to an HTML page does not cause a Web Workers to be active.

The "Shared" part of "Shared Web Worker" comes from the fact that the Web Worker is shared

between browser tabs when multiple browser tabs are open. To observe this, load the

file index.html from two or more tabs. All tabs in the browser share the Web Worker.

5.2 A small Sample explained
The following sample shows a small sample how to use the Shared Web Worker.

The sample shows:
1. Creating a SharedWorker (new SharedWorker("ClientBin/CDE/cdeWorker.js"))

2. Starting communication with the C-DEngine (StartCommunication())

3. Handling Login, which means waiting for the CDE_CONN_CHANGED event. (This is not

needed when Auto-Login is enabled and valid credentials are available).

4. Waiting for the Login Success (on receipt of the message CDE_LOGIN_EVENT).

5. An example of sending a custom subscription to the FirstNode (Subscribe()), as well as other

message sending example.

6. Handling incoming messages from the mesh (on receipt of the

message CDE_INCOMING_MSG).

It also shows how to asynchronously access a resource (using either fetcth or XMLHttpRequest)

from the mesh (GetResourceString()). In the sample, the web worker selects the appropriate access

method, using Fetch if the browser supports it, otherwise, XMLHttpRequest is used.

5.3 Supported Web Browsers
Browsers that support Web Workers make up 36% of browsers in use today (*).

◼ Chrome on desktop (all versions) - 23%

◼ Firefox (version 29 and later) - 4%

Web to Mesh Connectivity Page 46 of 60
C-DEngine [October 10, 2019]

◼ Safari (version 5-6) - < 1%

◼ Opera (version 11.5 and after) - < 1%

◼ Microsoft Edge (Chromium-based), beta release August 2019 - 0%

5.4 Unsupported Web Browsers
Browsers that do not support Web Workers make up 64% of browsers in use today(*). - Chrome for

Android - 35% - Safari 6.1 - 12.1) - 2% - Safari iOS - 11% - Microsoft Internet Explorer - 2% - Microsoft

Edge - 2%

(*) Supported and Unsupported Web Worker data from caniuse.com, with worldwide browser

market share from StatCounter GlobalStats for September 2019.

5.5 Debugging
The following instructions were specifically created for Google Chrome. 1. Open a new browser tab.

2. Type chrome://inspect in the address bar. 3. On the left side of the page (under the "DevTools"

heading) click Shared workers. (If there is an empty screen, then no shared workers are active.) 4.

On the left side of the page, click Pages. Click on inspect under the source file cdeWorker.js. 5. You

should see an F12 Developer Tool window show up with the worker.jsin the Sources Tab.

document.addEventListener("DOMContentLoaded", function () { // Wait

until the DOM has loaded

 // Load The SharedWorker. The Worker is inside the CDMyNMIHtml5

Plugin and will be

 // served automatically by its WebServer on this "FirstNode" if the

plugin is present

 // If the plugin is not present, the "cdeWorker.js" must be hosted

on the same Web

 // Server as the scripts that want to use it.

 let worker = new SharedWorker("ClientBin/CDE/cdeWorker.js");

 // First register the event handler for messages coming from the

Worker

 worker.port.onmessage = (ev) => {

 let message = ev.data;

 switch (message[0]) { // All Events have "MyWHSI" (Comm

Status) in message[1]

 case "CDE_INCOMING_MSG": // Incoming mesh messages from

the FistNode

 MyHSI = message[1];

 // message[2] contains "TheProcessMessage" (see below).

The ".Message"

 // field is of Type "TSM" (see below)

 break;

 case "CDE_LOGIN_EVENT": // Success or failure

notification on Login Event.

 MyHSI = message[1];

 // message[2]==true reflects login success /

false=login failed

 // and browser is NOT in the mes scope of the FirstNode

 if (message[2] === true) {

 // essage[3] contains the "TheUserPreferences"

object (see below)

https://caniuse.com/#feat=sharedworkers
https://gs.statcounter.com/

Web to Mesh Connectivity Page 47 of 60
C-DEngine [October 10, 2019]

 // DO NOT SEND MESSAGES TO THE MESH UNTIL YOU HAVE

RECEIVED THIS EVENT!

 // Any message you send before will not be

handled/forewared by the

 // FirstNode because the browser will not have a

valid scope until this message

 // Send Your subscriptions after login was

successful

 worker.port.postMessage(["Subscribe",

"MyCustomTopic"]);

 // The following call reverses the topci subscribe

 // worker.port.postMessage(["Unubscribe",

"MyCustomTopic"]);

 // The following line sends a message using

individual parameters

 // this.port.PostToWorker(["SendQueued", pOwner,

pTopic, pEngineName, pTXT,

 // pPLS, pFLG, pQDX, pLVL, tTargetNodeID, pGRO,

pSender]);

 // This line sends a TSM to a target Node

(bIncludeLocalNode not supported yet)

 // this.port.PostToWorker(["SendToNode",

tTargetNodeID, targetTSM,

 // bIncludeLocalNode]);

 // Replies a TSM to a sourceTSM.ORG

(bIncludeLocalNode not supported yet)

 // this.port.PostToWorker(["SendToOriginator",

sourceTSM, targetTSM,

 // bIncludeLocalNode]);

 // Sends a TSM with a custom Topic to a custom

NodeID setting the Sender Object

 // this.port.PostToWorker(["SendTSM", tTSM, pTopic,

tTargetNodeID, pSender]);

 // Sends a TSM do the FirstNode only

 // this.port.PostToWorker(["SendToFirstNode",

targetTSM]);

 }

 break;

 case "CDE_SELECT_MESH": // If a user has access to

multiple meshes

 MyHSI = message[1];

 // message[2] will be a list of TheMeshPicker (see

below). The login

 // will not be complete until a "SelectMesh" message is

sent back to the FirstNode

 // Picking the first node as the desired mesh.

 // Please do proper error handling and selection!!

 worker.port.postMessage(["SelectMesh",

message[1][0].cdeMID]);

 break;

Web to Mesh Connectivity Page 48 of 60
C-DEngine [October 10, 2019]

 case "CDE_SETSTATUSMSG": // Contains information for the

UI on

 // current Worker Activities

 MyHSI = message[1];

 // mesage[1] contains user friendly text;

 // message[2] contains importance (see eMsgLevels in

C#)

 break;

 case "CDE_NEW_LOGENTRY": // Informational messages from

the worker

 MyHSI = message[1];

 // message[1]=location

 // message[2]=error message

 // message[3]=serverity (0-3:

same as eMessageLevels in C#)

 break;

 case "CDE_COMM_STARTED": // Communication was started

successfully

 // but might not be connected

 MyHSI = message[1];

 break;

 case "CDE_ENGINE_GONE": // An Engine disconnected. This

will be

 // fired if the communication

was lost

 MyHSI = message[1];

 // message[2] contains Engine

Name

 break;

 case "CDE_CONN_CHANGED": // Event if connection has

changed

 MyHSI = message[1];

 // message[2]

 // =true=connection established

 // =false=connection lost

 if (message[2]==true && !MyHSI.IsUserLoggedIn)

 {

 // If called multiple times only the frst call will

be used

 worker.port.postMessage(["Login", { QUID:

"a@a.com", QPWD: "aaaaaaaa" }]);

 }

 break;

 case "CDE_UPDATE_HSI": // Event if the Global Settings

have changed by the

 // node and delivered to the

Worker

 MyHSI = message[1];

 break;

 case "GRS_/ClientBin/Lang/NMILang1041.json": //

GRS_<ResourceName used in

 // postMessage([GetResourceString]...

 // if GSR is used /ClientBin/ is added automatically

 MyHSI = message[1];

 var tMyLanguageFile = JSON.parse(message[2]);

 break;

 default:

Web to Mesh Connectivity Page 49 of 60
C-DEngine [October 10, 2019]

 break;

 }

 };

 // Start the worker Port

 worker.port.start();

 // Otherwise get the WHSI from the worker first to find out its

state:

 worker.port.postMessage(["GetWHSI",null]); // Return is delivered

above in CDE_UPDATE_HSI

 // (note that every

call to the WebWorker must

 // have at least one

parameter)

 // Full "TheCommunicationConfig" see below.

 // If called multiple times only the frst call will be used

 worker.port.postMessage(["StartCommunication", { port: 8704, host:

"localhost" }]);

 // REST and Async Resource Fetch commands:

 // Requests a Resource from the first node via HTTP "Fetch" or

XMLHttpRequest.

 // Resource is fetched async and result will be delivered in:

 // "onMessage("GRS_/ClientBin/<ResourceName>")" (see above)

 // This can also be used for REST calls using "GET" (POST and other

 // REST Methods are not yet supported)

 worker.port.postMessage(["GetResourceString",

"Lang/NMILang1041.json"]);

});

 // Full List of WebWorker postMessages:

 worker.port.postMessage(["SetConfig", { port: 8704, host:

"localhost" }]);

 // Starts the communication. If Config is null, SetConfig must be

called before

 worker.port.postMessage(["StartCommunication", { port: 8704, host:

"localhost" }]);

 // Adds an array of Name Value keys pairs to the IndexedDb of the

current session

 worker.port.postMessage(["UpdateCustomSettings", [{ Name: "MyKey",

Value: "MyValue" }]]);

 // Subscribes to a new PubSub topic(s) separted by ;

 worker.port.postMessage(["Subscribe", "topic1;..."]);

 // Unsubscribes from PubSub topic(s) separated by ;

 worker.port.postMessage(["Unsubscribe", "topic1;..."]);

 // Sends a message using an individual parameter

 worker.port.PostToWorker(["SendQueued", pOwner, pTopic,

pEngineName, pTXT, pPLS,

Web to Mesh Connectivity Page 50 of 60
C-DEngine [October 10, 2019]

 pFLG, pQDX, pLVL, tTargetNodeID, pGRO,

pSender]);

 // Send a TSM to a target Node (bIncludeLocalNode not supported

yet)

 worker.port.PostToWorker(["SendToNode", tTargetNodeID, targetTSM,

bIncludeLocalNode]);

 // Replies a TSM to a sourceTSM.ORG (bIncludeLocalNode not

supported yet)

 worker.port.PostToWorker(["SendToOriginator", sourceTSM, targetTSM,

bIncludeLocalNode]);

 // Sends a TSM with a custom Topic to a custom NodeID setting the

Sender Object

 worker.port.PostToWorker(["SendTSM", tTSM, pTopic, tTargetNodeID,

pSender]);

 // Sends a TSM do the FirstNode only

 worker.port.PostToWorker(["SendToFirstNode", targetTSM]);

 // Ends the current session and records the reason for ending the

session.

 worker.port.postMessage(["Logout", "reason"]);

 // Logs a user in with either UID/PWD or the Refresh Token given by

the CDE Host

 worker.port.postMessage(["Login", { QUID: "username", QPWD:

"password",

 QToken:"RefreshToken" }]);

 // If a user has access to multiple meshes, SelectMesh must be

called after an initial

 // Login. The Worker will fires an event

 // (postMessage("CDE_SELECT_MESH", Array<cde.TheMeshPicker>) to the

caller.

 // The caller must call this method with one of the cdeMIDs in the

Array

 worker.port.postMessage(["SelectMesh", "GUID-Token of the Mesh"]);

 // Gets the current content of the WHSI (WebWorker Status Info)

 worker.port.postMessage(["GetWHSI", null]);

 // Fetches a JSON object from the CDE Host - return see below

 worker.port.postMessage(["GetJSON", "ResourceToFetch",

"AddHeaderIfRequired"]);

 // Fetches a string Resource from the CDE Host. This works even

before login.

 // It is for FirstNode Resources only.

 worker.port.postMessage(["GetResourceString", "ResourceToFetch",

"AddHeaderIfRequired"]);

 // Fetches a string resource from the CDE Mesh (only works AFTER

login)

 worker.port.postMessage(["GetGlobalResource", "ResourceToFetch",

"AddHeaderIfRequired"]);

Web to Mesh Connectivity Page 51 of 60
C-DEngine [October 10, 2019]

The three methods GetJSON, GetResourceString and GetGlobalResource are all asynchronous and

each fires a postMessage back to the caller:

◼ GJ_resourceName for GetJSON

◼ GRS_resourceName for GetResourceString

◼ GGR_resourceName for GetGlobalResource

If the fetch (XMLHttpRequest for older browser that do not support fetch) fails, the worker will

postMessage:

◼ GJ_ERROR_resourceName for GetJSON

◼ GRS_ERROR_resourceName for GetResourceString

◼ GGR_ERROR_resourceName for GetGlobalResource

The caller should remember the resourceName and then take the appropriate action. The

TypeScript implementation of the WebWorker class handles this automatically.

Here a small sample using TypeScript with the Cde.js

var MyCommChannel = new cdeWEB.cdeWebWorkerComm();

 MyCommChannel.RegisterEvent("CDE_LOGIN_EVENT", (sender, success,

succesText) => {

 if (success) {

 MyCommChannel.Subscribe("testTopicSub");

 var tTSM: cde.TSM = new cde.TSM("ContentService");

 tTSM.TXT = "CDE_GET_SERVICEINFO";

 MyCommChannel.SendTSM(tTSM);

 }

 });

 MyCommChannel.RegisterEvent("CDE_INCOMING_MSG", (sender,

pProcessMsg:cde.TheProcessMessage) => {

 cde.MyEventLogger.FireEvent(true,

"CDE_NEW_LOGENTRY","incoming", pProcessMsg.Topic + ":" +

pProcessMsg.Message.TXT,1);

 });

 var tConfig: cde.TheCommConfig = new cde.TheCommConfig(0);

 tConfig.uri = "http://localhost:8704;:;a@a.com;:;aaaaaaaa";

 MyCommChannel.StartCommunication(tConfig);

You will need an include statement for the file cde.js in your HTML start page and reference

the cde.d.ts TypeScript definition file in your TypeScript source files.

5.6 Required Classes
The following C-DEngine classes are used by the Shared Web Worker:

export class TheProcessMessage { // Envelope of incoming Messages

from the Worker

 // and sent to "CDE_INCOMING_MSG"

 Topic: string; // Incoming Topic

Web to Mesh Connectivity Page 52 of 60
C-DEngine [October 10, 2019]

 CurrentUser: any; // UserID attached to this message.

Not supported in Browser

 Message: cde.TSM; // The Message content

}

export class TheWHSI { //The Worker Status Information

 CurrentRSA: string = null; // CurrentRSA Key used for RSA

Encryption

 IsConnected: boolean = false; // True if the Communication was

established

 CallerCount: number = 0; // Amount of SharedWorker ports

 HasAutoLogin: boolean = false; // True if the credentials have

been set before

 // the Login Dialog appeard

(AutoLogin)

 FirstNodeID: string = ''; // NodeID of FirstNode after

connect

 AdminPWMustBeSet: boolean = false; // True if FirstNode requires

AdminPWToBe Set (browser

 // is unscoped and cannot

send any telegrams

 // except "SET_ADMIN_PWD")

 AdminRole: string = ''; // Role of the Current User

(currently not used)

 UserPref: cde.TheUserPreferences; // User Preferences (see

below) coming in

 // with the CDE_LOGIN_EVENT

 MyServiceUrl: string = ''; // Http URL of the FirstNode

- can be used for DeepLinks

 MyWSServiceUrl: string = ''; // WebSockets URL of the

FirstNode - can be empty

 // if websockets are disabled

 IsUserLoggedIn: boolean = false; // True if a user is

currently logged in

}

export class TheCDECredentials { // Credentials for Login

 QUID: string = ""; // UserName used to login

 QPWD: string = ""; // Password used to login

 QToken: string=null; // A token that allows login in

(coming soon)

}

export class TheTimeouts { // Timeout class

 HeartBeat: number = 30; // Send HB every xx seconds

 PickupRate: number = 250; // Polling Cycle for http requests

- not used with websockets

 InitRate: number = 100; // Not used in browser

 HeartBeatMissed: number = 4; // Amount of HB missed to consider

connection closed

 PickupRateDelay: number = 1; // Delay of pickup for Http (not

used with WebSockets)

 WsTimeOut: number = 5000; // If >0 a connection will be

closed if the FirstNode

Web to Mesh Connectivity Page 53 of 60
C-DEngine [October 10, 2019]

 // websockets do not respond in the

given time

}

export class TheCommConfig { // Communication Settings class

 TO?: TheTimeouts; // TheTimeouts Class see above

 port?: number; // Port of the node to connect to

 uri?: string; // if port and host are not used,

the uri to connect

 // to can be set here

 wsuri?: string; // in case WS uses a different

port than the http

 // requests, put WS URI Here

 host?: string; // Host of the node. Should be

just the IP, DNS

 // Name or "localhost". Comm will

assemble "uri"

 // from

<http|ws><useTLS?"S":"">://<host>:<port>

 useTLS?: boolean; // Requires TLS (https/wss) to

connect to node

 Creds?: TheCDECredentials; // Login credentials (see above)

 IsWSHBDisabled?: boolean; // if true, the Browser will not

send WebSocket

 // heartbeats (not recommended)

 cdeTIM: Date; // Time of last write to

IndexedDB

 DisableRSA: boolean = false; // Incoming Only. If true, RSA

will not be used

 RequestPath: string = null; // Incoming ISBPath (NPA) - only

for CDE Integrated calls

 KeepSessionAlive: boolean = false;// If false, MyConfig will be

deleted on logout

 constructor(pWSTimeOut:number) { // Defaults for above settings

 this.port = 80;

 this.host = null;

 this.Creds = null;

 this.useTLS = false;

 this.IsWSHBDisabled = false;

 this.TO = new TheTimeouts();

 if (pWSTimeOut > 0)

 this.TO.WsTimeOut = pWSTimeOut; // number of ms to wait

until WS

 // connection is

considered dead

 }

}

export class TheNV {

 public Name: string;

 public Value: string;

export class TheDataBase { // Base Class of all Data related

classes

Web to Mesh Connectivity Page 54 of 60
C-DEngine [October 10, 2019]

 cdeMID: string; // Unique ID of the message

 cdeCTIM: Date; // Timestamp of the message

 cdeEXP: number; // Expiration in seconds of

the message

 cdePRI: number; // Priority of the message

 cdeAVA: number; // Avaiability of the

message

 cdeN: string; // NodeID where the message

was created

}

export class TheUserPreferences extends cde.TheDataBase {

 ShowClassic: boolean; // User Wants to see the old

"Classic" NMI Frame

 ScreenParts: string[]; // [0]=StartScreen [1]=PortalScreen

[2]=hideheader (true/false)

 ThemeName: string; // If the user has a custom Style

Sheet as preference

 // it will be here.

 LCID: number; // The users LCID (1031=us, 1033=de

etc)

 ShowToolTipsInTable: boolean; // The users wants to see tooltips in

tables

 SpeakToasts: boolean; // The user wants to use text-to-

speech for all toasts

 // (user messages that briefly appear

in the browser window).

 // This is an accessibility feature.

 Transforms: string; // The user has custom transforms

enabled

 CurrentUserName: string = ''; // Current User Name

 CurrentLCID: number = 0; // Current LCID of the Connection

(before user has logged in)

 PortalScreen: string = ""; // PortalScreen of the NMI (Must be a

dashboard)

 StartScreen: string = ""; // StartScreen of the NMI (a screen

in the

 // PortalScreen Dashboard)

 HideHeader: boolean = false; // True if the FirstNode wants to see

no Header in the browser

}

export class TheMeshPicker extends cde.TheDataBase { // Current mesh.

An array if user has

 // access to

multiple meshes

 MeshHash: string; // 4 Digits Mesh Hash

 NodeNames: Array<string>; // Names or IDs of nodes in the mesh

 HomeNode: string; // Name or ID of the node this user

is registered

}

export class TSM { // The System Message class - inter-node message

envelope

 TIM: Date; // TimeStamp of message creation

Web to Mesh Connectivity Page 55 of 60
C-DEngine [October 10, 2019]

 ORG: string; // Originator(s) of the message. For incoming

messages the

 // ORG contains all nodes separated by ; the

message was

 // relayed over. Dont use this to determin the

creator of

 // the message. use TSM.GetOriginator()

 SID: string; // Scrambled ScopeID of the message. For

security reasons this

 // is no longer set starting 4.209

 FID: number; // Serial Number of the message

 UID: string; // UserID assiciated with this message. Not

set for

 // browser messages

 FLG: number; // Flags of the message

 QDX: number; // Message Priority. Default=5, lower number

means

 // higher priority. QDX=0 is not relayed via

the cloud

 CST: string; // Per message costing

 OWN: string; // Owner of the message

 LVL: number; // Level of the Message (eMesageLevels)

Default:4 "Message"

 ENG: string; // Engine/Subscription Topic of the message

 TXT: string; // Command/Text of the message

 PLS: string; // Payload string of the message

 PLB: any; // Payload binary of the message

 GRO: string; // GRO can be set for route optimization

 constructor() { // Defaults for the Message:

 this.TIM = new Date();

 this.FID = MsgSendCounter++;

 this.QDX = 5;

 this.LVL = 4;

 }

 public static GetOriginator(pTSM: TSM): string { // Returns the

NodeID of the Message creator

 if (!pTSM.ORG) return "";

 var t: string[] = pTSM.ORG.split(';');

 return t[0];

 }

}

5.7 Important Notes
If you are accessing the cdeWorker.js from an iFrame or other Tab on the browser while the

NMI is running, the communication might already be established. The small sample above

handles this correctly.

If you "host" the webworkertest.html and the cdeworker.js on a different node than the C-

DEngine NMI, you must set the following to flags in the App.Config of your node/relay:

Web to Mesh Connectivity Page 56 of 60
C-DEngine [October 10, 2019]

Key Value Explanation

AllowRemoteISBConnect true Allows an ISB connect to the Site

Access-Control-Allow-Origin * Allows CORS access from another host:port

5.8 Future enhancements
By request only.

5.9 Dependencies
None.

Web to Mesh Connectivity Page 57 of 60
C-DEngine [October 10, 2019]

Web to Mesh Connectivity Page 58 of 60
C-DEngine [October 10, 2019]

Appendix A: The Fire Gate Plugin

A.1 About the Fire Gate Plugin
The Fire Gate plugin is a REST relay. It enables REST connections to one or more REST servers, and

logs each REST request and the corresponding REST response.

A.2. Configuring Fire Gate Plugin
To configure the Fire Gate plugin, log on to Factory Relay (or a C-DEngine-powered application of

your choice), and navigate to the Fire Gate Plugin's dashboard (see Figure A.1).

Figure A.1. The dashboard of the Fire-Gate plugin.

To create a new Fire-Gate, click on the Fire-Gates plugin. You see a table with all currently available

fire-gates (see Figure A.2).

Figure A.2. Table of currently available fire-gates.

Click the Add Fire-Gate button. An empty row appears (Figure A.3).

Web to Mesh Connectivity Page 59 of 60
C-DEngine [October 10, 2019]

Figure A.3. An empty row for a new fire gate.

Fill in with your desired values, then click the checkmark icon to save.

Figure A.4. A sample fire-gate.

An example appears in Figure A.4. In the example shown here, we use a public test REST site,

http://jsonplaceholder.typicode.com/. Here are some of the URLs that are defined in that site:

◼ http://jsonplaceholder.typicode.com/db

◼ http://jsonplaceholder.typicode.com/posts

◼ http://jsonplaceholder.typicode.com/users

◼ http://jsonplaceholder.typicode.com/comments

Details of one way to fill in the fields appear in Figure A.5.

Figure A.5. Details of settings for example fire get setting.

http://jsonplaceholder.typicode.com/

Web to Mesh Connectivity Page 60 of 60
C-DEngine [October 10, 2019]

Figure A.6 shows the results when a test REST client is used to call into the test REST server.

Figure A.6. REST Test Client calling through Fire Gate to REST Test Server.

